首页 > AR、MA及ARMA模型

AR、MA及ARMA模型

互联网 2022-01-18 01:15:26

在上一讲中我们介绍了时间序列中最为重要的三个概念,在本讲里面会介绍几个最为基础的时间序列模型:AR、MA和ARMA,这些模型都旨在解释事件序列内在的自相关性从而预测未来。在ARMA模型的基础上,还有扩展的ARIMA和SARIMA模型。

对于金融时间序列,由于其具有volatility clustering的特性,时间序列的波动率(二阶矩)并不是一个不变的常数,AR、MA和ARMA模型是无法刻画这种条件异方差的特性,ARCH和GARCH模型可以解决这一问题,关于在量化中大量运用的GARCH簇模型在后面会有较多篇幅去介绍。

如何选择最优的模型

在讲具体模型之前,我们首先需知道什么是最优的模型,有怎样的标准去评价“最优”。通常来讲,akaike information criterion(AIC)和bayesian information criterion(BIC)是评价模型优良的两个指标。这两种评价指标不仅适用于事件序列模型,还广泛广泛运用于其他数学模型中。

AIC = -2 ln(L) + 2 k

BIC = -2 ln(L) + ln(n)*k

让我们来理解AIC的含义,AIC由两部分组成,一部分是对数极大似然函数,另一部分则是参数的个数。极大似然函数是评价模型拟合优劣性的指标,值越大说明拟合的效果越好。然而使用过多的参数可以拟合的很好却会出现过度拟合的情况,这样的模型泛化能力很差,因此加上参数的个数实际上是对极大似然函数进行”惩罚“。选取AIC值最小的模型作为最优模型,实质上是平衡了欠拟合和过拟合。

AR 模型

AR模型思想很简单,该模型认为通过时间序列过去时点的线性组合加上白噪声即可预测当前时点,它是随机游走的一个简单扩展。采用R可以去模拟一个简单的AR(1)序列:

x

免责声明:非本网注明原创的信息,皆为程序自动获取互联网,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责;如此页面有侵犯到您的权益,请给站长发送邮件,并提供相关证明(版权证明、身份证正反面、侵权链接),站长将在收到邮件12小时内删除。